3 resultados para wavefront vergence

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern helmet-mounted night vision devices, such as the Thales TopOwl helmet, project imagery from intensifiers mounted on the side of the helmet onto the helmet faceplate. The increased separation of the cameras induces hyperstereopsis - the exaggeration of the stereoscopic disparities that support the perception of relative depth around the point of fixation. Increased camera separation may also affect absolute depth perception, because it increases the amount of vergence (crossing) of the eyes required for binocular fusion, and because the differential perspective from the viewpoints of the two eyes is increased. The effect of hyperstereopsis on the perception of absolute distance was investigated using a large-scale stereoscopic display system. A fronto-parallel textured surface was projected at a distance of 6 metres. Three stereoscopic viewing conditions were simulated - hyperstereopsis (four times magnification), normal stereopsis, and hypostereopsis (one quarter magnification). The apparent distance of the surface was measured relative to a grid placed in a virtual "leaf room" that provided rich monocular cues, such as texture gradients and linear perspective, to absolute distance as well as veridical sterescopic disparity cues. The different stereoscopic viewing conditions had no differential effect on the apparent distance of the textured surface at this viewing distance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The visual demands of modern classrooms are poorly understood yet are relevant in determining the levels of visual function required to perform optimally within this environment. METHODS: Thirty-three Year 5 and 6 classrooms from eight south-east Queensland schools were included. Classroom activities undertaken during a full school day (9 am to 3 pm) were observed and a range of measurements recorded, including classroom environment (physical dimensions, illumination levels), text size and contrast of learning materials, habitual working distances (distance and estimated for near) and time spent performing various classroom tasks. These measures were used to calculate demand-related minimum criteria for distance and near visual acuity, contrast and sustained use of accommodation and vergence. RESULTS: The visual acuity demands for distance and near were 0.33 ± 0.13 and 0.72 ± 0.09 logMAR, respectively (using habitual viewing distances and smallest target sizes) or 0.33 ± 0.09 logMAR assuming a 2.5 times acuity reserve for sustained near tasks. The mean contrast levels of learning materials at distance and near were greater than 70 per cent. Near tasks (47 per cent) dominated the academic tasks performed in the classroom followed by distance (29 per cent), distance to near (15 per cent) and computer-based (nine per cent). On average, children engaged in continuous near fixation for 23 ± 5 minutes at a time and during distance-near tasks performed fixation changes 10 ± 1 times per minute. The mean estimated habitual near working distance was 23 ± 1 cm (4.38 ± 0.24 D accommodative demand) and the vergence demand was 0.86 ± 0.07(Δ) at distance and 21.94 ± 1.09(Δ) at near assuming an average pupillary distance of 56 mm. CONCLUSIONS: Relatively high levels of visual acuity, contrast demand and sustained accommodative-convergence responses are required to meet the requirements of modern classroom environments. These findings provide an evidence base to inform prescribing guidelines and develop paediatric vision screening protocols and referral criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Little is known about the prevalence of refractive error, binocular vision, and other visual conditions in Australian Indigenous children. This is important given the association of these visual conditions with reduced reading performance in the wider population, which may also contribute to the suboptimal reading performance reported in this population. The aim of this study was to develop a visual profile of Queensland Indigenous children. METHODS: Vision testing was performed on 595 primary schoolchildren in Queensland, Australia. Vision parameters measured included visual acuity, refractive error, color vision, nearpoint of convergence, horizontal heterophoria, fusional vergence range, accommodative facility, AC/A ratio, visual motor integration, and rapid automatized naming. Near heterophoria, nearpoint of convergence, and near fusional vergence range were used to classify convergence insufficiency (CI). RESULTS: Although refractive error (Indigenous, 10%; non-Indigenous, 16%; p = 0.04) and strabismus (Indigenous, 0%; non-Indigenous, 3%; p = 0.03) were significantly less common in Indigenous children, CI was twice as prevalent (Indigenous, 10%; non-Indigenous, 5%; p = 0.04). Reduced visual information processing skills were more common in Indigenous children (reduced visual motor integration [Indigenous, 28%; non-Indigenous, 16%; p < 0.01] and slower rapid automatized naming [Indigenous, 67%; non-Indigenous, 59%; p = 0.04]). The prevalence of visual impairment (reduced visual acuity) and color vision deficiency was similar between groups. CONCLUSIONS: Indigenous children have less refractive error and strabismus than their non-Indigenous peers. However, CI and reduced visual information processing skills were more common in this group. Given that vision screenings primarily target visual acuity assessment and strabismus detection, this is an important finding as many Indigenous children with CI and reduced visual information processing may be missed. Emphasis should be placed on identifying children with CI and reduced visual information processing given the potential effect of these conditions on school performance.